مدل بندی سلسله مراتبی مقادیر کرانگین فضایی

thesis
abstract

چکیده مقادیر کرانگین به مشاهدات خیلی بزرگ یا کوچک حاصل از یک فرایند اطلاق می شود. تحلیل این مقادیر در نظریه مقادیر کرانگین با فرض استقلال همراه است. گاهی این فرض در عمل واقع گرایانه نیست. وابستگی فضایی مشاهدات از جمله مواردی است که موجب نقض این فرض می شود. معمولا در نظریه مقادیر کرانگین فرض می شود ماکسیماهای سالیانه فضایی از توزیع مقدار کرانگین تعمیم یافته پیروی می کنند، که ساختار همبستگی فضایی داده ها در پارامترهای توزیع منعکس می شود، که در آن وابستگی های کوچک مقیاس با استفاده از تابع مفصل گاوسی و تی و وابستگی های بزرگ مقیاس از طریق پارامتر مکان توزیع های کناری مدل بندی می-شوند. بر ازش مدل در رهیافت بیزی با استفاده از تکنیک های مونت کارلوی زنجیر مارکوفی انجام می گیرد که شامل الگوریتم نمونه گیری گیبز، متروپولیس- هستینگز قدم زدن تصادفی و نمونه گیر استقلال سازوار است. همچنین پیشگوئی فضایی بیزی براساس مدل های ارائه شده با تقریب توزیع پیشگو به دست آورده می شود. در پایان جذب و تفکیک وابستگی های فضایی چندمقیاسی در مطالعه شبیه سازی مورد بررسی قرار گرفته و تحلیل فضایی مقادیر کرانگین سرعت باد ارائه می شود. واژه های کلیدی: مقادیر کرانگین فضایی، تابع مفصل، وابستگی فضایی کوچک-مقیاس، نمونه گیری استقلال سازوار.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

مدل بندی آماری مقادیر کرانگین فضایی

( با توجه به اینکه پایان نامه با نرم افزار فارسی تک نوشته شده فایل word آن موجود نیست و فایلهای تک به جای آن قرار داده شده است ) مقادیر کرانگین به مشاهدات خیلی بزرگ یا کوچک حاصل از یک فرآیند اطلاق می گردد. تحلیل این مقادیر در نظریه مقادیر کرانگین با پذیره هایی چون استقلال و هم توزیعی همراه است. با این حال در عمل گاهی این فرض ها غیر واقعی هستند. وابستگی زمانی مانند روندهای دراز مدت و الگوهای فص...

15 صفحه اول

مدل بندی مقادیر کرانگین فضایی با میدان تصادفی و تابع مفصل

در این مقاله مدل فضایی برای تحلیل مقادیر کرانگین با توزیع حاشیه ای مقدار کرانگین تعمیم یافته معرفی می شود، که در آن وابستگی های کوچک مقیاس با استفاده از تابع مفصل تی فاصله مدل بندی و سپس با رویکردی سلسله مراتبی میدانی تصادفی برای جذب وابستگی های بزرگ مقیاس با پارامتر مکان توزیع های حاشیه ای مرتبط می شود. برازش مدل در رهیافت بیزی با استفاده از تکنیک های مونت کارلوی زنجیر مارکوفی انجام می گیرد که...

full text

توزیع مقادیر کرانگین موزون و ویژگی‌های آن

در این مقاله یک توزیع وزن‌دار شده‌ جدید بر پایه توزیع مقادیر کرانگین معرفی می‌گردد. ویژگی‌ها و مشخصه‌های اساسی این توزیع از قبیل تابع توزیع تجمعی، تابع مولد گشتاور، ضریب چولگی و کشیدگی مورد بررسی قرار می‌گیرد. پس از به ‌دست آوردن برآوردگرهای ماکسیمم درستنمایی پارامترها، دو مثال واقعی برای بررسی مناسب بودن مدل و عملکرد برآوردگرها ارائه شده است.

full text

تحلیل بیزی مقادیر کرانگین با استفاده از اسپلاین در مدل آمیخته تعمیم یافته

مدل‌بندی پاسخ‌های کرانگین در حضور اثرات غیرخطی، زمانی، فضایی و متقابل می‌تواند با مدل آمیخته صورت پذیرد. به علاوه اسپلاین همواری در مدل آمیخته و رهیافت بیزی تواما چارچوب مناسبی را برای استنباط مقادیر کرانگین فراهم می‌کنند. در این مقاله به کارگیری اسپلاین همواری برای اثر غیرخطی متغیر تبیینی در قالب یک مدل آمیخته تعمیم‌یافته بیان و برای تحلیل مقادیر کرانگین به کار می‌رود. برای این منظور فرض می‌شو...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023